The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs
نویسنده
چکیده
In this paper we demonstrate the first real-world cloning attack on a commercial PUF-based RFID tag. The examined commercial PUFs can be attacked by measuring only 4 protocol executions, which takes less than 200 ms. Using a RFID smartcard emulator, it is then possible to impersonate, i.e., “clone” the PUF. While attacking the 4-way PUF used by these tags can be done using traditional machine learning attacks, we show that the tags can still be attacked if they are configured as presumably secure XOR PUFs. We achieved this by using a new reliability-based machine learning attack that uses a divide-and-conquer approach for attacking the XOR PUFs. This new divide-and-conquer approach results in only a linear increase in needed number of challenge and responses for increasing numbers of XORs. This is in stark contrast to the state-of-the-art machine learning attacks on XOR PUFs that are shown to have an exponential increase in challenge and responses. Hence, it is now possible to attack XOR PUF constructs that were previously believed to be secure against machine learning attacks. Since XOR Arbiter PUFs are one of the most popular and promising electrical strong PUF designs, our reliability-based machine learning attack raises doubts that secure and lightweight electrical strong PUFs can be realized in practice.
منابع مشابه
Efficient Power and Timing Side Channels for Physical Unclonable Functions
One part of the original PUF promise was their improved resilience against physical attack methods, such as cloning, invasive techniques, and arguably also side channels. In recent years, however, a number of effective physical attacks on PUFs have been developed [17,18,20,8,2]. This paper continues this line of research, and introduces the first power and timing side channels (SCs) on PUFs, mo...
متن کاملA New Arbiter PUF for Enhancing Unpredictability on FPGA
In general, conventional Arbiter-based Physically Unclonable Functions (PUFs) generate responses with low unpredictability. The N-XOR Arbiter PUF, proposed in 2007, is a well-known technique for improving this unpredictability. In this paper, we propose a novel design for Arbiter PUF, called Double Arbiter PUF, to enhance the unpredictability on field programmable gate arrays (FPGAs), and we co...
متن کاملtudor alexis andrei soroceanu On Arbiter PUFs and Bent Functions
Modern Cryptography is heavily based on the ability to securely store secret information. In the last decade Physical Unclonable Functions (PUFs) emerged as a possible alternative to non-volatile memory. PUFs promise a lightweight and lower-priced option compared to non-volatile memory, which has to be additionally secured and is known to be prone to reverse-engineering attacks [Qua+16]. PUFs a...
متن کاملCombined Modeling and Side Channel Attacks on Strong PUFs
Physical Unclonable Functions (PUFs) have established themselves in the scientific literature, and are also gaining ground in commercial applications. Recently, however, several attacks on PUF core properties have been reported. They concern their physical and digital unclonability, as well as their assumed resilience against invasive or side channel attacks. In this paper, we join some of thes...
متن کاملOn the Scaling of Machine Learning Attacks on PUFs with Application to Noise Bifurcation
Physical Unclonable Functions (PUFs) are seen as a promising alternative to traditional cryptographic algorithms for secure and lightweight device authentication. However, most strong PUF proposals can be attacked using machine learning algorithms in which a precise software model of the PUF is determined. One of the most popular strong PUFs is the XOR Arbiter PUF. In this paper we examine the ...
متن کامل